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1. INTRODUCTION

The problem of testing for the dimensionality of the regression matrix under

multivariate regression model has received considerable attention in the litera-

ture. This problem arises in the areas of pattern recognition, signal processing,.

and functional and structural relations. For a discussion on applications in

functional relations, the reader is referred to Anderson(1984).

Fisher (1938) considered the problem of testing for the number of significant

discriminant functions and it is a special case of the problem of testing for

the rank of the regression matrix. Tintner (1945) derived the likelihood ratio

* test (LRT) statistic for the rank of the above matrix when the covariance matrix

* is known. Anderson (1951) derived the(LRT) statistic for the rank of the regres-

' sion matrix when the covariance matrix is known. Fujikoshi (1974) derived the

LRT procedure for the rank of the regression matrix under growth curve model.

Recently, Rao (1985) considered the LRT procedure for the rank under a general

model, incorporating the multivariate regression model and the two-way classifica-

tion with interaction and with one observation per cell. The above work was done

when the underlying distribution is multivariate normal. The object of this paper

is to discuss various procedures for testing for the dimensionality of the regression

matrices and derive asymptotic distributions of the test statistics when the

underlying distribution is real or complex elliptically symmetric distribution.

In Section 2 of this paper, we give some preliminaries and state the main

problems that are considered. The LRT procedures for the dimensionality of the

" regression matrices are derived in Sections 3 and 4 for the cases of the real

and complex elliptically symmetric distributions respectively. Asymptotic

distributions of the above test statistics are derived in Section 5 when the
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joint distribution of the observations is elliptically symmetric. Multivariate

normal and multivariate t distributions are special cases of the elliptically

symmetric distributions. In Section 6, we derive the asymptotic distribution

of the LRT statistic for the rank of the regression matrix when the observations

are distributed indepently as elliptically symmetric. The assumptions made about

the underlying distributions is Sections 5 and 6 are equivalent only in the case

of multivariate normal.

1 Accession For

. . . . . . . . . . . . .. .. ..-.. ... I'.
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2. STATEMENT OF PROBLEMS AND PRELIMINARIES

Consider the model

X = AO + E (2.1)

where the error matrix E: nxp is distributed as an elliptically symmetric dis-

tribution with density

f(E) = - h(trZ -1 E'E) (2.2)

where h(x) is strictly decreasing and differentiable function of x. Also,

A: nxk is known and of rank k< n, and e: kxp is unknown. Now, let

A - ce (2.3)

where C: uxk is known and of rank u. Let H denote the hypothesis

that the rank of A is r and H2 denote the hypothesis that AE P r. Here AE Pr

denotes that the rows of A lie in a r-dimensional plane in p-dimensional space.

Now, let ir (a) denote the set of nxp matrices of the form

M- (GF+ ab')D (2.4)

where IG'GI 0, FF'= Ir and D: pxp is any positive definite matrix and b is any

pxl vector. Then H1 denotes the hypothesis that AE n r(0) whereas H2 denotes the

hypothesis that Ae iT r(1) where 1' - (l,...,1).

Next, consider the model
'S.

Z -AS + N (2.5)

where B: kxp is an unknown complex matrixN: nxp is distributed as the complex

elliptically symmetric distribution with density given by

44
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f(N) h(2tr Z-N'N) (2.6)E n

Here, we note that the complex elliptical distribution was introduced by Krishnaiah

and Lin (1984). In this paper, we consider the problems of testing the hypotheses

H and H2 when the mn4alying distributions are real and complex elliptically

symmetric. We need the following lemmas in the sequel.

Lemma 2.1. If a is a uxl complex vector, L: nxp is a complex matirx, Q: pxp is

Hermitian, positive definite matrix such that the rank of

S = Q71 2L'(I -a(a'if 1 a )EQ 1 /2

is r or more, then the eigenvalues of

S(M) = Q-I 2 (L-M)'( L)Q-I 2

are minimized simultaneously with respect to Me T (a) if and only if
r r

M= [a(a'a)-la L-/+(In-a(.-%a)'a')L&-1/2V;Vr]& /

where the rows of Vr consist of normalized eigenvectors corresponding to the firstr

r largest eigenvalues of S. The minimum values of ch i(S(M)) are given by r+i

where chi(A) denotes i-th largest eigenvalue of A, 0I> . .>op are the eigenvalues of

S and - 0 for j>p.

When a, L and Q are real, the above lemma was proved by Fujikoshi (1974). The

proof of Lemma 2.1 follows along the same lines as in Fujikoshi (1974). From

Lemma 2.1, the following lemma follows immediately:

Lemma 2.2. Let f(S) be a function of a pxp Hermitian matrix S such that

f(s) = g(ch (S),...,ch (S))

....................................
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and g(.) is strictly decreasing in each argument. Then

max f(S(M))I g(Pr+1 "''. p', 0,...,0)
Me7r (a)

r.
where 0j . ch=(S) for j- 1,2 ,...,p.

The following lemma was proved in Bai (1984).

SLLemma 2.3. Suppose

(n)z K+  (n) K-i (n)
fn(Z) = a Z ai Z .,.+a 0n K K-iZ

f(Z) -akZk+ ak.izk-l+...+ao

_(n)# ,n , n O
where K> k. Also, let f (Z)- f(Z).as n- , where aK 0, n-12,... and ak#.

n K
In addition, let ZI,...,Zk denote the roots of f(z). Then, we can suitably arrange

the roots of f as ZZ znk ) ...z~nK such that

S(n) i. Zi for i< k

I Izjn_, for i> k

as n

4,/

5,

k . 4 4 .- 5 , .~ " ~ * 5 'S
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3. LR TESTS FOR THE DIMENSIONALITY OF THE REGRESSION MATRIX

In this section, we derive the LR test for the dimensionality of the regression

matrix under the model (2.1) for the cases when Z is known and unknown and theV

underlying distribution is elliptically symmetric. For the sake of simplicity, we

first reduce-the model to a canonical form. It is known that nonsingular matrices

TA, TC and orthogonal matrices rA, rC exists such that

kxk uxu nxn kXk

AstrA k)TA (3.1)
nxk A'0 A

CT =T (I O)r. (3.2)
A C u C

We make the following orthogonal transformation

y- =s r (X- Ae). (3.3)

n kj

From assumption (2.2) we get the density function of Y as

n

irl 2 h(trZ-l(y_ )'(Y- )) (3.4)

If we partition Y and E as

Y u u
IY2k-u  -- 2k-u" .

Y nk3 n-k ,

p p

it is easy to see that

1.' '
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' '"i.Y, " (I u °)r rc(k o)r~x

. 2 = (0 Iku)r C(I k Olr x

Y =(Co i )r'X
3 n-k A

= (In o)rC(IkolraA. TC1 A  (3.5)

H2= (o ik_u) rC(i k o) r Ae = (0 1k )TTA

(0 LktJ~kA ( k-u~C A0

3 = (0 In-k ) qA6 = (0 1n (k ) 'Ok)TAe = 0.

Under canonical form the hypotheses 1 I and H2 are equivalent to E i (0) and
E 7 Ir(a) respectively where a = TC 1. Now, let H and H2 denote the alternative

hypotheses H= E 7r(0) and E1 E 7t, (a) respectively for some r' > r. Also, let

M = C(A'A)-Ic'
.-.

.= (A'A)- A'X

S h(=,M) = (C E)'M-(cE) (3.6)

Sf(=-,M) = (CE) '{M-l-M-II(I'M-11)-llM-lIc.

-' S = X'(I-A(A'A) A)X.

0_ 3.1 LRT Statistics when Z is Known

When E is known, the LRT statistic for testing H1 against H1 is given by

!' max sup ]E - h(tr-l(y-=)' (Y-_=))

1=67r r(0 )  =

. -- 2
rT

".'.': sup It.- h(trE - =),(y_=))

":!' .. . .......-- .- ....... . .-....-......-. '. "_ •"- . .~ " '. . ... • -. ,
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max h(tr- 1 (Y1 - 1 ) ' (Yl-= )+trz- Y'Y3)

h(trZ-YY 3 )

Since h(x) is a decreasing function of x, Y3 -'Y> 0 and (Y- 1)7 -(YI- )'>0,

we obtain, from Lemma 2.1,

h( ,,+. .. +, s+t rZ- Y 3 )

T+ 3 3(.7

h(trY-1 lY3

where Y3Y = X'(In- A(A'A)- A')X, €i>'''>€s > 0 are positive eigenvalues of

- i = Sh(_=0 ,M)Z and s = min(u,p). When the underlying distribution

__ is multivariate normal, we obtain

-2 log TI  (3.8)
b! "

The LRT statistic for testing H2 against H2 is given by

max h(trE-l (Yl---) '(Y -_=l)+trE-Y'Y
T=Eflr(. )K-lY

2 h(tr'Y3

.h(4 +." ..+4-*- + tr-'Y'Y)r s 3 3 (3.9)

h(tr-'Y )
3 3

where l_.> s> 0 are the positive eigenvalues of Sf(= 0 ,M)z - and s = min(u-l,p).

When the underlying distribution ismultivariate normal, we obtain

~if -2 log T2 = r+l+... . (3.10)

3.2 LRT Statistics when E is Unknown

When E is unknown, the LRT statistic for testing H1 against HI is given by

1

d. , . . . . . . - ' . , . . - . ' . . . , % - '2 " - . . " . - . ' j - . , . • . - . - - . . - . - .
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2

=zEr
0 max max sup Izi h(trZ -E)Y

E 7T l r ( 0 ) Z> 0 =

T3  n -

max sup JZJ- ' h(trE- (Y-_=)'(Y- E))n2. >O n

,2'-1 2

max max Z1  h(trE-I(Y )'(Y-=)+YIY
E -E r(0) Z>O

n
max JE" 2 h(trZ-'Y3 )

np p
max X-

E7T ra(0) max(h)l (- 1 (--I)3Y3 max(h)(

np , n P
2 h(x'ax2(h)1Y 3Y3 max (h)

. Equation (3.11) follows from Anderson and Fang (1982) who derived the LRT procedure

for e = 0 when the underlying distribution is real elliptically symmetric. Now,

using Lemma 2.1, we obtain

1-- -I

T max I-(YY ((YI-=I)'Y -E) )(YY 3)
3 -E7Tr(O)l

n

- ((l+dr+ I )(l+dr+ 2) .... (l+ds ) 2 (3.12)

where s = min(u,p) and dl>...>d > 0 are the positive eigenvalues of Sh(ZoM)S
S hj

Similarly, the LRT statistic for testing H2 against H2 is

1 n

T = max I-(Y'Y3) ((Y_ ),(y 3) ) (3 13)
EIT( i)j 3  I-1 1-1 Y

1 r
n

=[ (l+2+l),.,(1+£s)I 2 (3.14)

where = min(u-l,p) and 2.>...>2-> 0 are the positive eigenvalues of S (-,M)S-

When the underlying distribution is multivariate normal, the test statistics T3

and T were derived by Fujikoshi (1974) and T was derived by Rao (1965).
4-.



10

4. LRT STATISTICS FOR THE DIMENSIONALITY OF
REGRESSION MATRIX IN COMPLEX ELLIPTICAL CASE

Consider the complex multivariate regression model (2.5) where N is distri-

buted as (2.6). Also, let -"

A0 =C (4.1)

where C: uxk is known and is of rank u. In addition, let H denote the
10

hypotheses that the rank of A0 is r whereas HI0 denote the alternative hypothesis

that the rank of A is greater than r where r <s - min(u,p). Also, let H2 0

denote the hypothesis that A E P and let H denote the alternative hypothesis
0 r 20

that A0 E P r' for some r' > r and r <s = min(u-l,p). Here AEP means that the
r

rows of A0 actually lie in a r dimensional complex plane. The hypotheses HI0

and H are respectively equivalent to A E T (0) and A E T (1). Also, let H
20 r.~ r 10

denote the alternative hypothesis that AE r, (0) for some r' > r and H
r 20

denote the alternative hypothesis that AE Tr (1) for some r' > r. We now reduce the
r.

model in canonical form as in the real case.

The problem of testing HI0 against H1 0 is equivalent to testing the hypothesis

E- 0 ) against the alternative -1 Tr 1(0) for some r' > r and r<s = min(u,p)
*1.r. r

in the canonical form. Similarly, the problem of testing H2 0 against H is
20 20

equivalent to testing the hypothesis E 7r (a) against the alternative
r

S , (a) = T l and r <s =min(u-l,p). When Z is known,r r C..

let T denote the LRT statistic for testing H1 0 against H and let T denote
5 1010 6

*--
the LRT statistic for testing H against H Then, using Lemma 2.1, we

H2 0  20*

obtain the following: ..

h(2$ +U 22 +tr E1 yYh 2r+l + .+2 s +  r 3 3 " '
T 5 = (4.2)

h(2 tr~ 1-Y 3Y

e I O " .

- - - . . .- . . . . - . ~ . ' . ,,-. .-. ... . . -
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T h(2 r++...+24 + 2 tr Z -Y3 3)rT 6 -33(4.3)

h(2tr E-Y 3)

where > s are the nonzero eigenvalues of S h(,M)SZ(IpM) ad >. "-swher -s> .h'e , and .

are the nonzero eigenvalues of Sf (8,M)S Z (I ,M) - . HerefP

Sh C,M) -(c)'- (d)

S JI ,Z) E

M = C(A'A)--'C (4.4)
4-1

Sf *,M = CC6)'M -M 1l'If'1'1'M e)(e. fc,M) --c '[l l ('-1- I- ](CO).

When the underlying distribution is complex multivariate normal, we have

T = exp{-(4r~l+...+s)} (4.5)

T6 - exp{- (r+l+ (4.6)

When Z is unknown, we denote the LRT statistic for H and H against H0
When10 20 agint 0

and H20 by T7 and T8 respectively. Then

T = {(J+d (l+d 2...C1+d )n (4.7)
7 r+1 r+2 S

T8 - {(fl+t£r+ I )(I+r+ 2 )...(i+ .),-n (4.8)

I

where d>-...>d are the nonzero eigenvalues of S (eM){S,(I,S)l and i>-'.. >X-

are the nonzero eigenvalues of Sf (,M){S (I,S )}

Tf 4
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5. ASYMPTOTIC DISTRIBUTIONS OF LRT TEST
STATISTICS FOR THE DIMENSIONALITY OF REGRESSION MATRIX

We know that

/h CtrE- I ( Y-_ ". -. (51

Y~ I Vn/2h~tr~7 1 - 1 )' (Y-H)+(Y2 -= 2 ) ' (Y2 -E)+YY 3 ) (5.1)

and d >...>d >0 are the positive roots of

0 = Ish(= OM) - dS = iY{Y1 - dY 3 . (5.2)

Since EEIr (0), i.e., rk(EI )= r>0O, we know that

IE'-1-n)LE 0 (5.3)

will have zero roots with multiplicity p-r and r nonzero roots. We arrange

these nonzero roots in order of decreasing magnitude and they appear as

Un- " h h 2,...,

where u0 = 0 , ui+...+ug=r, I>'">" S

Since Z >0 we can write Z--Q'Q, Q >0 and rk(QE1 ) = rk( )-r. Hence

there exist orthogonal matrices V1 . V2 , such that

V71Q tV2  1UV 1V2 1 2

0 ,n u . . . 0 A" (say)1112

0 0 . . 0 . . ..

Let U ,- *

0 0 0 0 %.. -.

QY VYV Q 2* , V1W V QY V131 IYI*V2 Y2* 1 V2V2 3 1 W3V2"

,,N '"- ,
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Then d >...>d >0 are also the positive roots of
1- -S

VYl* - dWW 3j = 0

and the density of W exists, and it is the marginal density of

h.(tr( y -.AI', y -AI + wtw +W" 3W 1  (.5.4)

Let YI* = W +A, then dla...>d s >0. satisfies

] (W1+A)' (W +A) - W. [ 0. (5.5)
1 w3 13

and the density of is the marginal density of3 w 1 ~u
W= Cwa) w= - h(trw'w),'-.. w31 n-k

p

= h(tr(wlw +w'w +w'w ) "  (5.6)
1 1 2 2 3 3

Let

W (wlag W 3 = (w3a)
uxp (n-k)xp

A -WjWl B -W'W1;: 3 -_

1< -w oiu 0 o. /5iu . o wl0~~ 0u u

0 . . .0 . .

0 . . . 0 . . . . 0

*1 *1 .1; :0
U

- f-CUE

. . . 0 0 . • .. . . 0

E, ... V o0

SN



14

where

...........

X+ rI1,... ,u *

Then (5.5) can be written as

x 1
jn A+n C + d B. 1 (57

- 1 / 2 . . U d -n j 0 .( 5 7

0 0

Let dl,.ds be the roots of (5.7). We classify them into Z*1 sets, con-

taining u1 , ... ,9u., s-r members respectively.

For the last set let d* be any one of thei putting d =n T and substituting

1/2*

it in (3.19), cancelling the common factor n- from the last p-r rows and columns $~

and finally letting n - It isequivalent to

lim 1 - (5.8)

. x z U E z.

A lz+l W lwl ) a's8 r+l,...,p.
tl 1t

n-k
B 12*1 l w3 tw 3 t8 cd. a- +1',,p-

t I

Equation (5.8) is equivalent to

limA LE 1E, - Z T-X+
n- L2t~ x n l

-lim [E - T. B-0() .
n Z+l1+11  (59

n---

L ,II S 1



where

u

E I ( w w w t) c,8-r+l,...,p.
tfr+l

Here, we note that eq. (5.8) is obtained by following same lines as in Hsu (1941).

When the underlying distribution is multivariate normal, we denote E, B Z+I+l by

E(N) and B( N )  respectively. We have
£~+i£+i

(N) (N)-1 dnE -1
n E B +in+i B£+,+

Since

lim i B(N) I
n t+l+l

we have

limlE(N) _T B +E+ f(N)-TII 0 (a.e.) (5.10)
n

(5.10) has s-r nonzero roots, written as r+l,...,rs. Let

Ti = nd i i 'r+l,....,s.

Then, by Lemma 2.3, for i =r+l,...,s we have

T i +T i  as n- .

So when n-
n

S 2

-2 n T3  -2 ln(l+d 2

i-r+l
In(l5+ T)n

i-r+l n

T tr EN) 2
~~~ ~ i trE ~(p-r) (u-r)"

ifr+l

%
J- .
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Similarly, we can show that the asymptotic null distribution of -2 In T4 is

2
X.(p-.r) (u-r-l) -R

We know T - ((l+ ).. +L)) 2( s -mln(u-l,p) and I >-  ">->O are the
4 5~ 9 -s

positive roots of

0 . IS (Z_ M) -ISj0- Isf'0I - -1sl -

.'.f 0

= l, iu(.Tc 1)((T-1l)'1(T - 1) ) 1CT c1 )' y -a I

2: where

(1 has the same density as in the proof of (5.11). Since

rk[I -(T -1l)((.T l1 )'(T -1)D) C1 T1 i)11 u-i
U C C C C

and it is an idempotent matrix, there exists an orthogonal matrix r U such that

r E i-(T-C Il)((Tc 1 1)(- )l(-11 I U10
U CC0 0

Taking orthogonal transformation

Y f Y= flY2

X3 0 1 n- Y 3

i.e.

Y1 =  'X Y2 - 2 Y3 f  3

Partition X as

iXl u-i
Xi X2 j l*

p

Then 1i>...>_>1 >0 are positive roots of

1- .
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Ix1 3yy3 1 " o

and the density of is the marginal density of

n

II2h tr ('xl .Xir' )+ Y, yY2 2/ ' 2* 2* Y

where

S2* = Y2 + 2"

Since rk='- r>0. Similar to (5.11), there exist orthogonal matrices VI,V

such that

I .0 u-i A(I)

1:v,(Qr'l)V2 0,••n u 0 (say)
1 12 0 U+ . -Xr I 0-

0

where X >...>X u+...+u=,r and - Q'Q Q> 0. Taking transformations

~~~~~QX' - V'X v ,-vwv Y

1 2 VX* QY* VW 2V2  QY - VI'W3V2

and denoting

X ( }W[ + -- 1 +

we observe that Z2>...>§. > 0 are the roots of

( ,[. +A 0 l )(,wV(1) +A(1 ) _ 'w;,31 -0

and the density of {W1I is the marginal density of
Lw3J

o.
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(wB w(2) 1 h(tr w'w).
1

/w2  I.-u "'-

So, the joint distribution of Zf,...,Z follows in similar way as the joint

distribution of di ,...,d

I• : ' '%.

" -" " " "= - " " " '", "* P " ,"%; "" " Z .' ,' " " . -",Z; ,', " ,- . " '-,. - -" ".' . % ,"-- , - .' Z .-.'' .S
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6. ASY)4PTOTIC DISTRIBUTIONS OF TEST

STATISTICS WHEN THE OBSERVATIONS
ARE INDEPENDENT

Consider the model

X =Ae + E

where A and 6 are as defined in (2.1), and

nxp
,i (n),

But we assume that E -. l 1E are distributed independently as
- /2

EI- h(trE- 1 E M94) (6.1)

with characteristic function 4(trETT'). We discuss the asymptotic distribution
of the last s-r nonzero eigenvalues of Sh(6,M){S (IS)} and S (e,M){S (IS)}- I

• h e fe

Following the same lines as in Section 5, we have

lim = 0 (6.2), .'-~ ~ ZiE- -B+ 1 1+

where
u

E - w lt Wl ltd aO = r+l,...,p. (6.3)
.'- "t=r+l

n-k
B£+I£+i ( w3 tw 3 t8 ) a,8 = r+l,...,p. (6.4)

tul

:"': Wl M (Wl) YI* A

uxp

- V2 (I O)rCIk O)rA(X-Ae)Q']Vjorr

44 %

SV

.4 -F-2-
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,4. ,,1*

W3  "(w 3a)

(n-k)xp-

V2 [(0 k (X-Ao)Q' l, (6.5)

and VI,V are two orthogonal matrices, Q'Q - >0.

Let

IZI

z = = (X-Ae)Q' (6.6)nxp ;
(n)l

From (6.1) we observe that Z ,... Z are distributed independently as h(trZZ').

Now, let

rc.= (re.), rA (rAk).

kxk nxn

By simple computations we have

n k n k

~(r r )z . ),.
Z-i i-i Z r) )

9.li- = i=l CiAU n
2 : : : 1

ni n nk

vr i z i - j cui A.tn

FzL
V2V (say) (6.7) 4

ul Uaj

and for any a (1,...,u), b (1,...,n) we have

EZ -0 (6.8)

ab .

. . . . . . . . .
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n k

Var Z Var[ n( i F AiFAi)Z Zb] (6.9)ab £=li-l

n k 2
r CaF ) (varZ Zb)

n k k
[-20'(0)] [ ( r + I rcairAircbj rA)

Z=i i=l iAi

k n2 k n
=[-W~(0)1{ r Cai ( Lr Ak + I r~ CaJY r Cb r Ak r )}k

Z 1 ij C bj A AJ )

= -20'(0). (6.10)

In the following we prove that the different Z 's are uncorrelated. For
ab

any c(Oa) E (1,...,u), d(#b) E (l,...,n)

n k n k
a c = E( Z( r .r )Z ( r )Z.ab cd ACaiUAi Z CCiAti dZ=li Ai lb =li=i

k k
= [[( . CairAti)( iCU Ami)ELZb mdl

Z,m-l i= b

When Z 0 nL E(Z~bZmd)= 0 and so E(ZaZd) 0 . When Z = m, b # d and E(Z)Z =0.
Ib~m)= 0ab c Zbmd

So E(Z abZ cd) 0. When Z f m, b = d, we have

, ,k n
E(Z* Z ) (-2 '0O)) 1 F rF .(_'iArE(ab cd = 1 cai ccj ([[A~irAij

Also,

n
FAiF = 0 ioj

Ai A2.jZ=1

nr2  k

N ZIJAZ, ~= 1, but ZF F a c = 0 i =J.

So, E(ZabZcd) -.0. Now, let Zab - -2 ' (0) Uab. By the central limit theorem

we get that Uab 's are mutually asymptotically independent normal variates with

zero mean and unit standard deviation.

e~
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Similarly,

n n

iiii
n n

j-i Aini" " i r A in Z i p --

Z k+l, . . .Zk+lp

= V2  Vl  (say) ,
21

Znl np

and for any i,kE (k+l,...,n) JiE (l,...,p) _

ij

E Z Z
iiki0 otherwise.

Let

Z = =0 "V
ij i

.I

The Vij's are mutually asymptotically independent normal variates with zero mean ,

and unit standard deviations.

Let

E* - ( UU ) c,8 - r+l,...,p.

t-r+l t
n-k

B+ - VtVt) t,6 - r+l,...,p.
t= 1 - '

Then

lim IE - B B + +lI 0

is equivalent to
A



23

lrn IEt B 0
n-- n--.

n +1 +I
n-

on-B = .

So, as n-, r+l..., are the eigenvalues of the central Wishrat matrix with

(u-r) degree of freedom.

Then following the same lines we can discuss the asymptotic distribution of

the last s-r nonzero eigenvalues of Sf (,M){S (IS)} I
fe

0:3-

4,"

0-

,I' m
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